Conjectures Concerning the Orders of the Torsion Subgroup, the Arithmetic Component Groups, and the Cuspidal Subgroup

نویسنده

  • Amod Agashe
چکیده

We make several conjectures concerning the relations between the orders of the torsion subgroup, the arithmetic component groups, and the cuspidal subgroup of an optimal elliptic curve. These conjectures have implications for the second part of the Birch and Swinnerton-Dyer conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results on Engel Fuzzy Subgroups

‎In the classical group theory there is‎ an open question‎: ‎Is every torsion free n-Engel group (for n ≥ 4)‎, nilpotent?‎. ‎To answer the question‎, ‎Traustason‎ [11] showed that with some additional conditions all‎ ‎4-Engel groups are locally nilpotent‎. ‎Here‎, ‎we gave some partial‎ answer to this question on Engel fuzzy subgroups‎. ‎We show that if μ is a normal 4-Engel fuzzy‎ subgroup of ...

متن کامل

Novikov Conjectures for Arithmetic Groups with Large Actions at Infinity

We construct a new compactification of a noncompact rank one globally symmetric space. The result is a nonmetrizable space which also compactifies the Borel–Serre enlargement X of X , contractible only in the appropriate Čech sense, and with the action of any arithmetic subgroup of the isometry group of X on X not being small at infinity. Nevertheless, we show that such a compactification can b...

متن کامل

Rational torsion in optimal elliptic curves and the cuspidal subgroup

LetN be a square free integer, and let A be an optimal elliptic curve over Q of conductor N . We prove that if A has a rational torsion point of prime order r such that r does not divide 6N , then r divides the order of the cuspidal subgroup of J0(N).

متن کامل

STRUCTURE OF THE CUSPIDAL RATIONAL TORSION SUBGROUP OF J1(p n)

Let Γ be a congruence subgroup of SL(2,Z). The modular curve X(Γ) and its Jacobian variety J(Γ) are very important objects in number theory. For instance, the problem of determining all possible structures of (Q-)rational torsion subgroup of elliptic curves over Q is equivalent to that of determining whether the modular curves X1(N) have non-cuspidal rational points. Also, the celebrated theore...

متن کامل

The nc-supplemented subgroups of finite groups

A subgroup $H$ is said to be $nc$-supplemented in a group $G$ if there exists a subgroup $Kleq G$ such that $HKlhd G$ and $Hcap K$ is contained in $H_{G}$, the core of $H$ in $G$. We characterize the supersolubility of finite groups $G$ with that every maximal subgroup of the Sylow subgroups is $nc$-supplemented in $G$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2013